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1. Introduction

Over the past several decades, the physics of randomly disordered crystals has
been studied extensively. An especially intense effort has been directed towards
understanding of the electronic structure of random semiconductor alloys. One of the
simplest treatments of such alloys is based on the Virtual Crystal Approximation (VCA)
that is applicable to perfectly random alloys [1-2]. In this approximation, the electronic
properties of the alloys are given by the linear interpolation between the properties of the
end-point materials. The alloy disorder effects are typically included through a bowing
parameter that describes the deviations from the VCA. The description of the
composition dependence of the band gap in terms of the bowing parameter has been
commonly used in a large variety of semiconductor alloys. It should be emphasized,
however, that this approximation is expected to work reasonably well only for systems
with bowing parameters much smaller than the energy gap.

Most of the studies of semiconductor alloy systems are restricted to the cases
where there are only small differences between properties of the end-point
semiconductor materials. Such “well-matched” alloys can be easily synthesized and
their properties are close to the VCA predictions. Recent progress in the epitaxial growth
techniques has led to successful synthesis of semiconductor alloys composed of
materials with distinctly different properties. The properties of these ‘“highly
mismatched” alloys (HMAs) drastically deviate from the linear predictions of the VCA.
The most prominent class of HMAs comprises the III-V,,-N, alloys, in which
electronegative nitrogen substitutes group V anions in standard group III-V compounds.
One of the striking effects of nitrogen incorporation into III-V semiconductors is a
dramatic reduction in the fundamental band gap. A band gap reduction of more than 180
meV has been observed in GaAs; N, alloys with only 1% N [3]. Similar effects were
observed in GaP N, [4], InP; N, [5], GaSb,As;.,,N, [6] and InSb;_ N, [7] alloys. The
large band gap bowing and the lower-than-usual band gap pressure dependence have
been found also in group II-VI HMAs such as ZnTe,.S, and ZnTe,..Se, [8], where

electronegative S or Se substitute metallic Te atoms.



The energy band structure of HMAs has been explained in terms of the Band
Anticrossing (BAC) model [8-9]. The model accurately describes the composition and
pressure dependencies of the fundamental band gaps of HMAs. Furthermore, it
predicted several new effects such as a N-induced enhancement of the electron effective
mass [10] and an improvement in the donor activation efficiency [11] in In,Ga;.,As; N,
alloys, and the change in the nature of the fundamental band gap from indirect to direct
in GaP,N, [12]. All these predictions have now been confirmed experimentally.

In the BAC model, the restructuring of the conduction band is a result of an
anticrossing interaction between highly localized A; states of the substitutional N atoms
and the extended states of the host semiconductor matrix. The interaction between these
two types of states has been treated in the simplest possible manner that does not
account for expected severe level broadening effects. These effects profoundly affect the
line shape of the observed optical transitions and they entirely dictate energy dissipative
processes such as free carrier transport.

To address these issues and to put the BAC model on a firmer theoretical base, we
have adopted the many-impurity Anderson model that has been widely used to treat the
interaction between impurity states and band states. The original Anderson model has
been developed to describe a single impurity atom of a transition metal or a rare-earth
element in a non-magnetic metal. In Anderson’s s-d exchange model [13], the electron
system is separated into a delocalized part of the matrix metal which is described in
terms of the band theory, and a localized level of the d shell electrons of the transition
metal impurity atom. A dynamical mixing term is introduced into the Hamiltonian of the
system to describe the hybridization between the band states and the localized impurity
states. Solving the Anderson Hamiltonian it has been found that, as a result of the
hybridization, the impurity d state becomes a virtual energy state with an imaginary
energy part proportional to the strength of the s-d hybridization. The imaginary part of
the eigen-energy of the virtual state defines the width of the density distribution of the d
state, and determines the lifetime of the state before the d electrons are delocalized into
the band states through the exchange interaction. Self-consistency calculations can be

performed to find the conditions for the existence of localized magnetic moments.



The single impurity Anderson model has been extended to explain the properties
of cerium-based heavy-Fermion systems. A periodic coherent Anderson model has been
developed and investigated over the years to accommodate both the spatial periodicity
and the localization of the 4f orbitals in the systems [14, 15]. The energy dispersion of
the system is restructured into two subbands, a result of the hybridization between the
localized orbitals and the band states. The newly-generated indirect gap between the
subbands has profound effects on the electrical and thermodynamical properties of the
system [16].

A many-impurity Anderson model has been proposed to describe the electronic
properties of semiconductor crystals with low concentrations of deep-level transition-
metal impurities [17-18]. Unlike ordinary hydrogenic impurity states in semiconductors,
these impurity states are characterized by two independent parameters: the spatial
extension of their wave function and their energy level with respect to the nearest band
edge of the host. The phase diagram for the electronic properties of crystals with such
impurities is much richer than for the simple hydrogen-like impurities. For example, as
the impurity concentration increases, in addition to the trend of conductivity increasing as
a result of the Mott transition [19], hybridization between the impurity states and the
band states of the host can considerably suppress the conductivity of the system in the
form of inter-state electron scattering. Therefore, transport properties of the crystal are
diversified by the competition between these two opposite processes.

In this paper, we use the many-impurity Anderson model to evaluate the
interaction between the randomly distributed localized states and the extended states in
HMAs. We solve this problem within the single site coherent potential approximation
(CPA). The calculations reproduce the BAC model results for the restructuring of the
conduction band. The imaginary part of the Green’s function also yields new information
on the electronic level broadening that is used to determine the broadening of the optical

transitions and to calculate the free electron mobility.

2. Theory



It has been predicted by Hjalmarson et. al. that incorporation of isoelectronic
impurities into semiconductors gives rise to highly localized levels [20]. The energy of
these levels depends on the electronegativity of the substitutional impurity. In the case of
highly electronegative impurities substituting metallic anions in compound
semiconductors, the energy levels are located close to the conduction band edge [20]. For
example, substitutional nitrogen as an isoelectronic impurity in GaAs generates an Aj-
symmetry localized level resonant with the conduction band of GaAs at ~ 0.23 eV above
the conduction band edge. This resonant level has been observed in optical experiments
when the level is moved into the GaAs band gap by applying hydrostatic pressure [21] or
alloying with GaP [22]. With increasing N impurity concentration, the interaction
between the localized N levels and the GaAs band states alters the electronic structure of
the resulting GaAs;..N, system.

We describe the electronic structure of HMAs (e.g., GaAs;..N,) by considering an
interaction between the localized and extended states within the many-impurity Anderson

model. The total Hamiltonian of the system is the sum of three terms [17, 18],
1 .
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where the first term is the Hamiltonian of the electrons in the band states with energy
dispersion E}°, and the second term corresponds to the energy of the electron localized on
the jth impurity site with energy Ejd. To simplify the expressions, we use a vector j to
denote the 3-dimentional coordinates of the jth site. The third term describes the change
in the single electron energy due to the dynamical mixing between the band states and the
localized states. It is assumed that only one band and one impurity level are involved in
the process. Following Anderson’s scheme, the hybridization strength is characterized by

the parameter V; defined by the following equation [13],
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where a(r-j) and @.(r-j) are the Wannier function belonging to the band and the localized
wavefunction of the impurity on the jth site, respectively. H,,. (r) is the single electron
energy described in the Hartree-Fock approximation [13].

The Fourier transform of  the retarded Green’s function,

G (E ) =<<¢, | ¢, >>, satisfies the following equation of motion [23-24],

E<<c,|c; >>=<|c,,ci.| >+<<[e,, H]|cj. >>. 3)
In Eq.(3), the bracket <--> represents the ensemble average. As follows from the

commutation relations between the operators, an integral equation for Gy has the form,
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where Gy =5kk,(E -E; -|-l'0+)_1 is the unperturbed Green’s Function, and the
renormalized interaction parameter is given by
V=V, Ve, [E-E!)=V?/(E-E?) 5)
where V' is the average value of V}j, assuming weak dependencies on k and j. The
justification of this assumption will be discussed later.

For the single impurity case, we can set j=0. The equation chain represented by
Eq.(4) is closed and has the following solution,
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where po(s) is the unperturbed density of states of E;” per unit cell. Since po(s) only
weakly depends on energy, we can assume that it is constant in first order approximation,
with an effective value equal to the unperturbed density of states evaluated at £ and

multiplied by a prefactor 3. Using this approximation, Eq.(6) gives the eigen-energies for



the system, £E=E, andE=F d +inBV2p0(E "), which are the solutions of the original
single-impurity Anderson model [13].

In general, we shall consider finite but dilute concentrations of impurities,
0<x<<I. We assume that the impurities are randomly distributed in space, so that we can
carry out a configurational averaging, neglecting correlations between positions of the
impurities. In this case, the single-site coherent potential approximation (CPA) is
adequate for the many-impurity system [25-26]. In the CPA, consecutive multiple
scatterings from each single impurity atom are fully taken into account, but correlations
between scatterings from different impurity atoms are neglected due to the lack of
coherence between the randomly distributed impurity sites. The CPA treatment leads to
the result that [17, 25-26], after the configurational averaging, the average Green’s
function partially restores the space translational invariance, and k resumes its well-
defined properties as a good quantum number. In momentum space, the diagonal Green’s

function in CPA can be written as [17,25-26]

-1
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where the average self-energy is proportional to the impurity concentration,

(E)= xV xV
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The average Green’s function G(E) defined in Eq.(9) is determined by the self-

consistency equation,

G(E)=— Y 1 (10)
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Noting that, as in the case of Eq.(7), the imaginary part of the denominator in
Eq.(10) is small (in proportion to a small number x), we can replace Eq.(10) by Eq.(7) as

the lowest order approximation. Eq.(8) thus becomes
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The new dispersion relations are determined by the poles of Gi(E), and the solutions are

given by an equivalent two-state-like eigen-value problem,
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where T, =nfV7’p, (E d) is the broadening of £ in the single-impurity Anderson Model.

If I';=0, Eq.(12) is reduced to the BAC model [9] with two restructured dispersions for

the upper and lower conduction subbands,

E+(k)=%{(E,f N +4V2x}. (13)

If the broadening I'; is nonzero but small, so that 2WAx >> TEBVZpO(Ed) and

E,-F d‘ >>nBV 7 p, (E ¢ ), we obtain an approximate analytical solution for Eq.(12),
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where E. (k ) is defined in Eq.(13). The imaginary part of the dispersion relations defines
the hybridization-induced uncertainty of the energy. We note that the imaginary part in
Eq.(14) is proportional to the admixture of the localized states to the restructured

wavefunctions in the two-state-like-perturbation picture described by Eq.(12),

ri(k):‘<(Pd|Eir(k)>‘2 T, (15)
3. Discussions and Comparison with Experimental Results

As an example, Fig.1 shows the dispersion relations given by Eq.(13) for
GaAsg 995N g0s near the Brillouin zone center. The broadening of the dispersion relations
is given by the imaginary part of Eq.(14). In the calculation, the hybridization parameter
V' =2.7¢eV, taken to be an experimentally-determined constant [9]. The density of states
for the GaAs conduction band edge is assumed to have a parabolic form following the

effective-mass theory,

po(e)=4n e —E. /37, (16)



where &, =n*(2n /b)’/ (2m) is of the order of the conduction band width. 5#=5.65 A is
the lattice constant of the unit cell, and m*=0.067m0 1s the electron effective mass of
GaAs. The prefactor f is taken to be equal to 0.22, as will be estimated below.

The density of states can be calculated from the imaginary part of the Green’s

function and is given by the expression,
1 1 c c
p(E):;ImZGkk(E):;J‘pO(Ek)Im[Gkk(E)]dEk' (17)
k

The integration converges rapidly with £, in a small range that is in proportion to x. The

calculated perturbed density of states for GaAs;.N, with several small values of x is
shown in Fig.2. Note that the anticrossing interaction leads to a dramatic redistribution of
the electronic states in the conduction band. The most striking feature of the density of
states curves is the clearly seen gap between E, and E. that evolves with increasing N
content.

In order to illustrate the effect of the state broadening on the optical properties, we
consider the spectral dependence of the interband absorption in In,Gai.,As;N, alloys.
The optical absorption coefficient due to the transitions from the valence bands to the

restructured conduction bands can be written in the form of the joint density of states as
1 c v c
a(E) o Eszo(Ek )im|G,, (£ + E} HES. (18)

In this expression, the sum over v represents the sum of the contributions from the heavy-

hole, the light-hole, and the spin-orbital split-off valence bands. Assuming parabolic
forms for the dispersions of the valence bands, E,, near the Brillouin zone center, we

have calculated the optical absorption for Ing04Gag96Asp.99Noo1 for which experimental
results are available [27]. The comparison between the calculation and the experimental
data is shown in Fig.3. In the calculation, the only parameter that has been adjusted is the
prefactor 3 used to scale the energy broadening, and the best fitting with the experimental
data is obtained with 3=0.22. The calculation clearly reproduces the two bumps on the
absorption curve, i.e., one starting at ~1.8 eV due to the onset of the transitions from the
heavy-hole and light-hole valence bands to £, and one starting at ~1.5 eV due to the

onset of the transition from the split-off valence band to £.. The more rapid rise of the



experimental data at the absorption edge near 1.2 eV is most likely due to continuum
exciton absorption effect, which is not considered in the calculation.

According to the band anticrossing Eq.(13), the hybridization results in a energy
gap near £ with magnitude depending on x,

_Vix
B! - Eg|

1

A=E,(0)- E :E(\/(Ed ~Ef +4rx (B —Eg)) ~ (19)

The broadening of Ei (k ) near the edge of the small gap is approximately
r,=npy’ pO(E d). To have a well-defined band restructuring, the gap between the two
subbands should be larger than the energy uncertainty, i.e., A>T,. This condition gives
a lower limit of x for the band restructuring,

3/2
x>xcz4n2BQEd—E§ /eB) : (20)

For N in GaAs, this concentration limit is x.~ 0.0016.

The band broadening function in Eq.(15) defines the lifetime of the free electrons
through the uncertainty principle. The mean free path of the electrons is the distance that
the free electrons on the Fermi surface travel within the lifetime. The upper limit of x for
the applicability of CPA treatment can be set as the concentration for which the average
distance between impurity atoms is equal to the mean free path. The upper limit of x is
thus inversely proportional to the free electron concentration, linked by the Fermi
velocity.

In the Green’s function calculation, the & dependence of Vj; is assumed to be
weak on the momentum scale we are interested in. In Eq.(5), the parameter Vy; is
averaged over the impurity sites and in k space. In the simplest case, all the impurity
atoms are of the same type, so that the j dependence of V7 is removed. The k dependence
of V}j can be estimated from Eq.(2). Assuming that the Hartree-Fock energy varies slowly

in space and can be replaced by a constant ¢ ,,., we have
V=t 2. [a (r=1)p, (r)dr. 1)
!

Due to the localized character of both a(r) and ¢, (r), the overlap integral in Eq.(21) is

essentially zero when a(r) and ¢ d(r) are located on two sites far apart from each other.
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In an attempt to model the k-dependence of Vi, we replace the integral in Eq.(21) by an
exponentially decaying function ~ exp(— l/1, ) , and obtain

4
There is experimental evidence indicating that the values of V4 at the L point in GaAs;.
«Ny [28] and at the X point in GaP;_N, [29] are about 3~4 times smaller than the V' at the

I' point. This ratio corresponds to a wavefunction decay length of the order of the lattice

constant, /, ~b. This result indicates that the off-zone-center conduction band minima

are affected by the anticrossing interaction only when their energies are close to the
localized level. This is consistent with recent measurements of the optical properties of
In,Ga,.,As N, alloys, which have shown that alloying with N has only very small effects

on the high energy transitions at large k vectors [30].

4. Conclusions

In summary, we have applied the many-impurity Anderson model to the
electronic structure of highly mismatched semiconductor alloys. The band restructuring
and energy broadening effects are investigated within the coherent potential
approximation. The dispersion relations calculated using the coherent potential
approximation reproduce the results of the two-level band anticrossing model [9]. The
band restructuring leads to a strongly perturbed density of states for the conduction band.
We show that the conduction band restructuring and the energy broadening have to be
included to explain the spectral dependence of the absorption coefficient of In,Ga;.,As;.
«Ny alloys. The energy broadening function can also be used to calculate the effects of the
hybridization on the transport properties of these highly mismatched alloys.

We thank B. Cardozo for his help with the computational software. J. Wu
acknowledges the Berkeley Fellowship from the University of California, Berkeley. The
work at Lawrence Berkeley National Laboratory is part of the project on the
"Photovoltaic Materials Focus Area" in the DOE Center of Excellence for the Synthesis
and Processing of Advanced Materials, and was supported by the Director, Office of

11



Science, Office of Basic Energy Sciences, Division of Materials Sciences of the U.S.

Department of Energy under Contract No. DE-AC03-76SF00098.

12



REFERENCES

[1]J. A. VanVechten and T. K. Bergstresser, Phys. Rev. B 1, 3351 (1970).

[2] R. Hill and D. Richardson, J. Phys. C 4, L289 (1971).

[3] M. Weyers, M. Sato and H. Ando, Jpn. J. Appl. Phys. 31, L853(1992); K. Uesugi, N.
Marooka and I. Suemune, Appl. Phys. Lett. 74, 1254(1999).

[4] N. Baillargeon, K. Y. Cheng, G. F. Hofler, P. J. Pearah and K. C. Hsieh, Appl. Phys.
Lett. 60, 2540(1992).

[S]W. G.Biand C. W. Tu, J. Appl. Phys. 80, 1934(1996).

[6] J. C. Harmand, G. Ungaro, J. Ramos, E. V. K. Rao, G. Saint-Girons, R. Teissier, G.
Le Roux, L. Largeau and G. Patriarche, J. Crystl. Growth, to be published.

[7] B. N. Murdin, M. Karmal-Saadi, A. Lindsay, E. P. O’Reilly, A. R. Adams, G. J. Nott,
J. G. Crowder, C. R. Pidgeon, 1. V. Bradley, J. P. R. Wells, T. Burke, A. D. Johnson and
T. Ashley, Appl. Phys. Lett. 78, 1558(2001).

[8] W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, E. E. Haller, I. Miotkowski, M.
J. Seong, H. Alawadhi and A. K. Ramdas, Phys. Rev. Lett. 85, 1552(2000).

[9] W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J.
M. Olson and S. R. Kurtz, Phys. Rev. Lett. 82, 1221(1999).

[10] M. Hettrich, M. D. Dawson, A. Yu Egorov, D. Bernklau and H. Riechert, Appl.
Phys. Lett. 76, 1030(2000); J. Wu, W. Shan, W. Walukiewicz, K. M. Yu, J. W. Ager III,
E. E. Haller, H. P. Xin and C. W. Tu, Phys. Rev. B 64, 85320(2001).

[11] K. M. Yu, W. Walukiewicz, W. Shan, J. W. Ager III, J. Wu, E. E. Haller, J. F.
Geisz, D. J. Friedman and J. M. Olson, Phys. Rev. B 61, R13337 (2000).

[12] W. Shan, W. Walukiewicz, K. M. Yu, J. Wu, J. W. Ager II1, E. E. Haller, H. P. Xin
and C. W. Tu, Appl. Phys. Lett. 76, 3251 (2000).

[13] P. W. Anderson, Phys. Rev. 124, 41(1961).

[14] A. Yoshimori and H. Kasai, J. Magn. Magn. Mat. 31, 475(1983).

[15] P. A. Lee, T. M. Rice, J.W. Serene, L. J. Sham and J. W. Wilkins, Comments Cond.
Mat. Phys. 12, 99(1986); C. M. Varma and Y. Yafet, Phys. Rev. B 13, 2950(1976).

[16] D. M. Newns and N. Read, Advances in Physics, 36, 799(1987); Peter S.
Riseborough, Phys. Rev. B, 45, 13984(1992).

13



[17] A. N. Kocharyan, Soc. Phys. Solid State 28(1), 6(1986).

[18] M. A. Ivanov and Yu. G. Pogorelov, Sov. Phys. JETP 49, 510(1979); M. A. Ivanov
and Yu. G. Pogorelov, Sov. Phys. JETP 61, 1033(1985).

[19] N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials,
Clarendon Press, Oxford (1971).

[20] Harold P. Hjalmarson, P. Vogl, D. J. Wolford and John D. Dow, Phys. Rev. Lett. 44,
810(1980).

[21] D. J. Wolford, J. A. Bradley, K. Fry, J. Thompson, in Physics of Semiconductors, ed.
by J. D. Chadi and W. A. Harrison, Springer, New York 1984.

[22] W. Y. Hsu, J. D. Dow, D. J. Wolford, B. G. Streetman, Phys. Rev. B 16,
1597(1977).

[23] G. M. Zaslavskii, E. V. Kuz’min and 1. S. Sandalov, Sov. Phys. JETP, 40,
707(1975); M. A. Ivanov and Yu. G. Pogorelov, Sov. Phys. Solid State, 16, 2140(1975).
[24] S. Doniach and E. H. Sondheimer, Green’s Functions for Solid State Physics, W. A.
Benjamin, Inc. 1974.

[25] Fumiko Yonezawa and Kazuo Morigaki, Supplement of the Progress of Theoretical
Physics, No.53, (1973).

[26] R. J. Elliott, J. A. Krumhansl and P. L. Leath, Rev. Mod. Phys. 46, 465(1974).

[27] P. Perlin, P. Wisniewski, C. Skierbiszewski, T. Suski, E. Kaminska, S. G.
Subramanya, E. R. Weber, D. E. Mars and W. Walukiewicz, Appl. Phys. Lett. 76, 1279
(2000).

[28] J. D. Perkins, A. Masarenhas, J. F. Geisz and D. J. Friedman, Phys. Rev. B 64,
121301 (2001).

[29] J. Wu, W. W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Y. Hong, H. P.
Xin and C. W. Tu, to be published.

[30] C. Skierbiszewski, P. Perlin, P. Wisniewski, T. Suski, J. F. Geisz, K. Hingerl, W.
Jantsch, D. Mars and W. Walukiewicz, Phys. Rev. B, to be published.

14



FIGURE CAPTIONS

Fig.1 Conduction band restructuring according to Eq.(14) for GaAsg9sNooos. The
broadening of the dispersion curves of the newly-formed subbands illustrates the energy
uncertainties defined in Eq.(15). All the energies are referenced to the top of the valence

band of GaAs.

Fig.2 Density of states of GaAs;_,N, alloys for a range of values of x as compared with
the unperturbed density of states. The two black dots on each curve indicate the energy

positions of the £_and £ subband edges.
Fig.3 Calculated optical absorption coefficient in comparison with room-temperature

experimental data for free-standing Ing04GagosAso99Npoi. The oscillations below the

absorption edge are due to Fabry-Perot interference.
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